The Influence of Debris Cages on Critical Submergence of Vertical Intakes in Reservoirs - Skyler D. Allen 2008

This study quantifies the influence of debris cages on critical submergence at vertical intakes in reservoir configurations. Four model debris cages were constructed of light panel material. A vertical intake protruding one pipe diameter above the floor of a model reservoir was tested in six configurations: open intake pipe, a debris grate placed directly over the intake pipe, and debris cages representing widths of 1.5*d and 2*d and heights of 1.5*c and 2*c, where d is diameter of the intake and c is height of intake above reservoir floor. A selection of top grating configurations and a submerged raft configuration were also tested for comparison. Testing of the model debris cages indicates that the roof or top grate of a debris cage dominates the influence a debris cage has on the reduction of critical submergence of air-core vortices. The side grates of a debris cage have some influence on the formation of vortices. The spacing of bars in the top grate has an influence on air-core vortex development. The presence of a debris cage at vertical intakes in still-water reservoirs reduces the critical submergence required to avoid air-core vortices and completely eliminates the air-core vortex for cases where the water surface elevation remains above the top grate of the debris cage. The potential exists for designing debris cages to fulfill a secondary function of air-core vortex suppression.

Channels and Channel Control Structures - K. V. H. Smith 2013-11-21

The development of water resources has proceeded at an amazing speed around the world in the last few decades. The hydraulic engineer has played his part: in constructing much larger artificial channels than ever before, larger and more sophisticated control structures, and systems of irrigation, drainage and water supply channels in which the flow by its nature is complex and unsteady requiring computer-based techniques at both the design and operation stage. It seemed appropriate to look briefly at some of the developments in hydraulic design resulting from this situation. Hence the idea of the Conference was formed. The Proceedings of the Conference show that hydraulic engineers have been able to acquire a very substantial base of design capability from the experience of the period referred to. The most outstanding development to have occurred is in the combination of physical and mathematical modelling, which in hydraulic engineering has followed a parallel path to that in other branches of engineering science. The Proceedings of this Conference will give to the reader an awareness of the current state of hydraulic design in open channel flow and open channel control structures. K.V.H. Smith Editor 1. CONTROL AND DIVERSION STRUCTURES 1-3 FACTORS AFFECTING BRINK DEPTH IN RECTANGULAR OVERFALLS G.C. Christodoulou, G.C. Noutsopoulos and S.A. Andreou Dept. of Civil Engineering, National Technical Univ. of Athens, Greece.
Planning and Installing Micro-Hydro Systems

Chris Elliott 2014-04-16

An essential addition to the Earthscan Planning & Installing series, Planning and Installing Micro-Hydro Systems provides vital diagrams, pictures and tables detailing the planning and installing of a micro-hydro system, including information on the maintenance and economics once an installation is running. The book covers subjects such as measuring head and flow, ecological impacts, scheme layouts, practical advice, calculations and turbine choice. Archimedes screws are also covered in detail, as well as the main conventional choices relevant to small sites. Micro-hydro refers to hydropower systems with a power rating of 100kW or less. A 100kW system will produce 100 standard units of electricity in one hour. These systems have been popular in some sparsely populated or mountainous countries for a number of years, but now new technology, less stringent regulation of grid connected generators and standardised turbine designs are encouraging more widespread interest in micro-hydro in the developed world. The renewable energy sector is growing at a remarkable rate, and whilst much attention has so far focused on solar and wind technologies, Europe and elsewhere have great potential for generating power from small scale hydroelectric installations. This book is aimed at site owners, designers and consultants who are looking to develop schemes in the micro-hydro scale – 5 to 100kW - although the concepts are applicable to smaller and larger schemes.

Root Cause Failure Analysis

Trinath Sahoo 2021-05-05

Root Cause Failure Analysis Provides the knowledge and failure analysis skills necessary for preventing and investigating process equipment failures. Process equipment and piping systems are essential for plant availability and performance. Regularly exposed to hazardous service conditions and damage mechanisms, these critical plant assets can result in major failures if not effectively monitored and assessed—potentially causing serious injuries and significant business losses. When used proactively, Root Cause Failure Analysis (RCFA) helps reliability engineers inspect the process equipment and piping system before any abnormal conditions occur. RCFA is equally important after a failure happens: it determines the impact of a failure, helps control the resultant damage, and identifies the steps for preventing future problems. Root Cause Failure Analysis: A Guide to Improve Plant Reliability offers readers clear understanding of degradation mechanisms of process equipment and the concepts needed to perform industrial RCFA investigations. This comprehensive resource describes the methodology of RCFA and provides multiple techniques and industry practices for identifying, predicting, and evaluating equipment failures. Divided into two parts, the text first introduces Root Cause Analysis, explains the failure analysis process, and discusses the management of both human and latent error. The second part focuses on failure analysis of various components such as bolted joints, mechanical seals, steam traps, gearboxes, bearings, couplings, pumps, and compressors. This authoritative volume: Illustrates how failures are associated with part integrity, a complete system, or the execution of an engineering process Describes how proper design, operation, and maintenance of the equipment help to enhance their reliability Covers analysis techniques and industry practices including 5-Why RCFA, fault tree analysis, Pareto charts, and Ishikawa diagrams Features a detailed case study of process plant machinery and a chapter on proactive measures for avoiding failures Bridging the gap between engineering education and practical application, Root Cause Failure Analysis: A Guide to Improve Plant Reliability is an important reference and guide for industrial professionals, including process plant engineers, planning managers, operation and maintenance engineers, process designers, chemical engineers, and instrument engineers. It is also a valuable text for researchers, instructors, and students in relevant areas of engineering and science.

Proceedings

International Association for Hydraulic Research 1983

Association Internationale de Recherches Hydrauliques ... Assemblée Générale

International Association for Hydraulic Research. Meeting 1981

Advances in Hydroinformatics

Philippe Gourbesville 2018-02-26

This book gathers a collection of extended papers based on presentations given during the SimHydro 2017 conference, held in Sophia Antipolis, Nice, France on June 14-16, 2017. It focuses on how to choose the right model in
applied hydraulics and considers various aspects, including the modeling and simulation of fast hydraulic transients, 3D modeling, uncertainties and multiphase flows. The book explores both limitations and performance of current models and presents the latest developments in new numerical schemes, high-performance computing, multiphysics and multiscale methods, and better interaction with field or scale model data. It gathers the latest theoretical and innovative developments in the modeling field and presents some of the most advance applications on various water related topics like uncertainties, flood simulation and complex hydraulic applications. Given its breadth of coverage, it addresses the needs and interests of practitioners, stakeholders, researchers and engineers alike.

Selected Water Resources Abstracts- 1991

Sustainable Hydraulics in the Era of Global Change- Sébastien Erpicum
2016-12-01 In an increasingly urbanized world, water systems must be designed and operated according to innovative standards in terms of climate adaptation, resource efficiency, sustainability and resilience. This grand challenge triggers unprecedented questions for hydro-environment research and engineering. Shifts in paradigms are urgently needed in the way we view (circular) water systems, water as a renewable energy (production and storage), risk management of floods, storms, sea level rise and droughts, as well as their consequences on water quality, morphodynamics (e.g., reservoir sedimentation, scour, sustainability of deltas) and the environment. Addressing these issues requires a deep understanding of basic processes in fluid mechanics, heat and mass transfer, surface and groundwater flow, among others. Sustainable Hydraulics in the Era of Global Change: Advances in Water Engineering and Research unveils latest research achievements and innovations which were presented at the 4th European Congress of the International Association for Hydro-environment engineering and Research (IAHR), held in Liege (Belgium). These new developments are based on state-of-the-art modelling technologies which are supported by the exponentially growing availability of data and computation power. Innovative synergies emerge between numerical modelling and experimental techniques, as well as field monitoring. Unique opportunities are created by multi-, inter- and trans-disciplinary approaches, bridging hydro-environment engineering and research with climate sciences, ecology, spatial planning, sociology. Sustainable Hydraulics in the Era of Global Change: Advances in Water Engineering and Research will serve as a reference for postgraduate, professionals and decision-makers involved in various water-related sectors, such as hydraulic engineering, fluvial hydraulics, coastal engineering, water resources management, and renewable energy.

Proceedings- 1979

Building Systems Design- 1922

The Heating and Ventilating Magazine- 1922

Hydraulic Engineering of Dams-Willi H. Hager 2020-11-05 Hydraulic engineering of dams and their appurtenant structures counts among the essential tasks to successfully design safe water-retaining reservoirs for hydroelectric power generation, flood retention, and irrigation and water supply demands. In view of climate change, especially dams and reservoirs, among other water infrastructure, will and have to play an even more important role than in the past as part of necessary mitigation and adaptation measures to satisfy vital needs in water supply, renewable energy and food worldwide as expressed in the Sustainable Development Goals of the United Nations. This book deals with the major hydraulic aspects of dam engineering considering recent developments in research and construction, namely overflow, conveyance and dissipations structures of spillways, river diversion facilities during construction, bottom and low-level outlets as well as intake structures. Furthermore, the book covers reservoir sedimentation, impulse waves and dambreak waves, which are relevant topics in view of sustainable and safe operation of reservoirs. The book is richly illustrated with photographs, highlighting the various appurtenant structures of dams addressed in the book chapters, as well as figures and diagrams showing important relations among the governing
parameters of a certain phenomenon. An extensive literature review along with an updated bibliography complete this book.

Selected Water Resources Abstracts- 1991

Design of Small Dams- 1987

Vortex Flows-American Society of Mechanical Engineers. Winter Annual Meeting 1980

Advances in Fluid Mechanics X-C. A. Brebbia 2014-07-01 Containing the proceedings of the tenth International Conference on Advances in Fluid Mechanics it follows the success of all previous conferences in the series, the first of which took place in 1996. The field of fluid mechanics is vast and has numerous, diverse applications. This book covers a wide range of topics, including basic formulations and their computer modelling as well as the relationship between experimental and analytical results. The emphasis is on new applications and research currently in progress. Topics covered include: Computational methods; Hydrodynamics; Fluid structure interaction; Multiphase flow; Bio-fluids; Electronic components; Environmental fluid mechanics; Heat and mass transfer; Industrial applications; Energy systems; Nano and micro fluids; Turbulent flow; River hydraulics; Combustion problems; Jets; Fluidics; Bubble and drop dynamics.

Design of Small Dams-United States. Bureau of Reclamation 1973

Analysis and Design of Marine Structures V-C. Guedes Soares 2015-03-11 Analysis and Design of Marine Structures V contains the papers presented at MARSTRUCT 2015, the 5th International Conference on Marine Structures (Southampton, UK, 25-27 March 2015). The MARSTRUCT series of conferences started in Glasgow, UK in 2007, the second event of the series took place in Lisbon, Portugal (2009), while the third was in Hamburg

Hydraulics and Hydrology in the Small Computer Age- 1985

Models in Hydraulic Engineering-Pavel Novák 1981

Civil Engineering Hydraulics Abstracts- 1985

Surface Production Operations: Volume III: Facility Piping and Pipeline Systems-Maurice Stewart 2015-10-15 Surface Production Operations: Facility Piping and Pipeline Systems, Volume III is a hands-on manual for applying mechanical and physical principles to all phases of facility piping and pipeline system design, construction, and operation. For over twenty years this now classic series has taken the guesswork out of the design, selection, specification, installation, operation, testing, and troubleshooting of surface production equipment. The third volume presents readers with a “hands-on” manual for applying mechanical and physical principles to all phases of facility piping and pipeline system design, construction, and operation. Packed with charts, tables, and diagrams, this authoritative book provides practicing engineer and senior field personnel with a quick but rigorous exposition of piping and pipeline theory, fundamentals, and application. Included is expert advice for determining phase states and their impact on the operating conditions of facility piping and pipeline systems; determining pressure drop and wall thickness; and optimizing line size for gas, liquid, and two-phase lines. Also included are a guide to applying international design codes and standards, and guidance on how to select the appropriate ANSI/API pressure-temperature ratings for pipe flanges, valves, and fittings. Covers new and existing piping systems including concepts for expansion, supports, manifolds, pigging, and insulation requirements Presents design principles for a pipeline pigging system Teaches how to detect, monitor, and control pipeline corrosion Reviews onshore and offshore safety and environmental practices Discusses
how to evaluate mechanical integrity

Transport Phenomena in Capillary-Porous Structures and Heat Pipes-Henry Smirnov 2009-07-29 Two-phase nano- and micro-thermal control device research is now proving relevant to a growing range of modern applications, including those in cryogenics, thermal engineering, MEMS, and aerospace engineering. Until now, researchers have lacked a definitive resource that provides a complete review of micro- and nano-scale evaporative heat and mass transfer in capillaries-porous structures. Transport Phenomena in Capillary-Porous Structures and Heat Pipes covers the latest experimental research efforts in two-phase thermal control technology research and development. The book covers vaporization heat transfer and hydrodynamic processes occurring in capillary channels and porous structures—paying particular attention to the physical mechanisms of these phenomena. Extensive experimental research activities on unique film and photo materials of boiling inside slits, capillaries, and capillary-porous structures are reviewed. By providing a complete record of research in the field, this volume gives researchers, engineers, and practitioners working on vaporization heat transfer and hydrodynamic processes the findings needed to avoid unnecessary experimental efforts, and will help further the development of this dynamic area of research.

Mechanical Engineering- 1969

Clean Energy and Fuel (Hydrogen) Storage-Sesha S. Srinivasan 2019-10-16 Clean energy and fuel storage are often required for both stationary and automotive applications. Some of these clean energy and fuel storage technologies currently under extensive research and development include hydrogen storage, direct electric storage, mechanical energy storage, solar-thermal energy storage, electrochemical (batteries and supercapacitors), and thermochemical storage. The gravimetric and volumetric storage capacity, energy storage density, power output, operating temperature and pressure, cycle life, recyclability, and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and onboard vehicular transportation. This Special Issue thus serves the need for promoting exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to practical and sustainable infrastructures.

Publication- 1978

First Progress Report on Hydraulics of Short Pipes-John L. French 1955

and held at the University of Western Australia (UWA), Perth from 8 10 November 2010. The volume addresses current and emerging challenges

Piping Handbook-Mohinder L. Nayyar 1999-11-04 Instant answers to your toughest questions on piping components and systems! It's impossible to know all the answers when piping questions are on the table - the field is just too broad. That's why even the most experienced engineers turn to Piping Handbook, edited by Mohinder L. Nayyar, with contribution from top experts in the field. The Handbook's 43 chapters--14 of them new to this edition--and 9 new appendices provide, in one place, everything you need to work with any type of piping, in any type of piping system: design layout selection of materials fabrication and components operation installation maintenance This world-class reference is packed with a comprehensive array of analytical tools, and illustrated with fully-worked-out examples and case histories. Thoroughly updated, this seventh edition features revised and new information on design practices, materials, practical applications and industry codes and standards--plus every calculation you need to do the job.

Applied Science & Technology Index- 2000

Pumping Station Design-Garr M. Jones, PE, DEE 2011-04-19 Pumping Station Design, 3e is an essential reference for all professionals. From the expert city engineer to the new design officer, this book assists those who need to apply the fundamentals of various disciplines and subjects in order to produce a well-integrated pumping station that is reliable, easy to operate and maintain, and free from design mistakes. The depth of experience and expertise of the authors, contributors, and peers reviewing the content as well as the breadth of information in this book is unparalleled, making this the only book of its kind. * An award-winning reference work that has become THE standard in the field * Dispenses expert information on how to produce a well-integrated pumping station that will be reliable, easy to operate and maintain, and free from design mistakes * 60% of the material has been updated to reflect current standards and changes in practice since the book was last published in 1998 * New material added to this edition includes: the latest design information, the use of computers for pump selection, extensive references to Hydraulic Institute Standards and much more!

Pumped-slurry Backfilling of Abandoned Coal Mine Workings for Subsidence Control at Rock Springs, Wyo-Gary J. Colaizzi 1981

Third Powerplant- 1969

Proceedings of the ... International Joint Power Generation Conference- 2001

Paper- 1981

Information Circular- 1981